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SUMMARY

A method based on assumptlions similar to those of MunK's
alrship theory and R.T. Jones! low-aspect—ratlo pointed—wing
theory has been developed to determine simple closed expressions
for the load distribution, 11ft, piitching moment, and center—of—
pressure positlon of inclined slender wing-body con.figura.‘bions
having flat—plate wings extending along the continuation of the
horizontal diemeters of circular fuselage sections. Expressions
for the aerodynamlc propertles of trilangular wings in combination
with conlcal bodies, semi-Infinlte cylindrical bodles, and bodiles
polnted at the nose but cylindrical at the wing root have been
developed in detall for all ratios of body diameter to wing span.
In all cases, the lift—curve slope of the wing-body combination was
less than that of the wing alome. For the case of the trlangular
wing and the body pointed at the nose but cylindrical at the wing
root, the loss In lift-curve slope reached a maximum of 25 percent
at. the large dismeter—span ratio of 0.707. With a conicel body
mounted on the same wing, the maxlimum logs of lift~curve slope was
only about 8 percent and ocourred at about the same diameter—span
ratio.

It 18 shown that the results are applicable at subsonlc and
transonic speeds, and at supersonlc speeds, provided the entlre
wing-body combinetion lles near the center of the Mach come.
Furthermore, 1t 1s pointed out that the assumptlons related to the
study of low-aspect—ratio polnted bodles and the study of moderate—
aspect—ratlio pointsd bodles traveling at sonic speed both lead from
Prandtl's linearized equation for compressible flow to the two—
dimensional Laplace's equation in the t.ra.nsverse pla.ne although by
different means.
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The determination of the potential distrlbution for an inclined
moderate—aspect—ratio wing at sonic speed is therefore mathematically
equivalent to the determination of the potentiel distribution for an
Inclined low—espect—ratio wing in an incompressible fluid.

INTRODUCTION

In the quest for airplane conflgurations having asrodynamic
properties favorabls for supersonic £llght, one of the more )
promising conflgurations involves the use of a low-espect—ratio
wing. When the general lasyout of such an airplane is consldered,
however, comparatlvely large fuselages are often found necessary. It
thus becomes importent to study the serodynamics of a complete wing-—
body combination throughout the entire Mach number range of the air—
plane, In an Incompressible medium, the mutusl interference of a
fuselage and wing of high—aspect ratio (to which lifting-line theory
is applicable) has been treated by Lemmertz, Wieselsberger, Pepper,
and Multhopp .1n references 1, 2, 3, end 4. It is the purpose of this
note to treat the effect on the aerodynamic loading of the mutusl
interference between & low—aspect—ratio pointed wing and a fuselage
conslsting of a slendsr body of revolution,

The aerodynemic propertises of slendsr wing-body conflguratlons
may be approximated by the method originally used by Munk in studying
the serodynemics of slendsr alrships (reference 5). R. T. Jones
(reference 6) applied this method to the study of low-aspect—ratio
pointed wings and Ribner (reference T) extended 1t to determine the
stabllity derivatives of low-aspect—ratlo trlanguler wings. The
esgentlal point in the study of slender bodles by this method 1s the
fact that the flow 1s approximately two—dimensional when viewed in
planes perpendicular to the direction of motion. Methods of classical
hydrodynemics may then be employed to determine the load distribution,
1ift, and center of pressure.

It has been shown by Tsien, Laitone, and R. T. Jones (references
8, 9, and 6) that the serodynamic properties of very slender bodies
of revolution and low—espect-ratio wings at small angles of attack
are wmaffected by compresslblility at subsonlc and supersonlc speeds.
A similar result will be ghown for slendsr wing-body combinations.

SYMBOLS

L 2
A aspect ratio.( %&L
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B
By,
By

cross—section area of body of revolution (wa?2)
cross—sectlon area of base of body of revolution

volumse

mean cross sectlon of body of revolutlion
ength

1ift coefficlent ;—
\4=/

lift—curve slope <%L>

1i1ft coefficient of wing without body

pltching moment coefficient <'qlsd'g>

pitching moment coefficlent of wing without body

1ift

Dbltching mament about apex of wing
free—atresm Mach number

wing area

veloclty of flight

complex potentlal function (o + 1iv)
complex variable (y + iz)

radius of body -

maximm wing chord

distance from apex to section of maximum span
semlgpan of flat plate

over—all length of wing-body coambination

additional apparent mass of circular cylinder



) atatic preseure

q free—gtream dynemlc pressure

r,8 polar coordinates |

g8 local semispan

Smax maximm semispan

t time

VW velocitles In y and 2z directions
X,¥,2 Carteslan coordinates

XD distence from apex to center of pressure
) veloclty potential

¥ gtream function

o angle of attack

€ downwash angle

1,6 transformed rectengular coordinates
¢ complex variable (n+1f)

p density of alr

Subscripts

W wing

P body

c compressible

i incompressible

NACA TN No. 1662



NACA TN No. 1662 | 5

ANALYSTS
General

The flow around an Inclined wing-body combination of very low
aspect ratio may be approximated by consldering it to be two
dimensional in transverse planes (perpendicular to the fuselage
center line). It can be shown as a consequence of this assumption
that the fiow in each transverse plane is independent of that in
the adjacent planes. Conglder a coordinate system moving downward
through the alr with a velocity TUa. The wing—body combination is
now considered to be flying in the negative x—direction with a
veloclty U and angle of attack a so that the fuselage center line
colncides with the x—axls of the coordlinate system and the plane of
the wing coincldes with the 2z = O plane. (See fig. 1(a).) The
Plow pattern, then, in the erbitrary x = Xo plane during the timse
of the passage of the wing—body combination lis approximately similer
to that of the transverse flow around an infinite cylinder having a
cross section similar to the local wing-body section. Observed in
thils plane, the semispan of the wing and the radius of the fuselags
change with time as the wing-body combination moves through the
plane, The resulting unsteady nature of the flow pattern produces
pressure differences between corresponding points on the upper and
lowsr surfaces of the wing and fuselage. The following analysis,
therefors, consists of three parts: determination of the veloclty
potential for the two—dimensional flow around the wing-body sectiidms,
determination of the distribution of load over each section, and
Integration of the loadling to determine the total 1ift and pitching
moment. Several examples are Included presenting the total 1ift,
center of pressure, and load distribution for typical complete wing—
body configurations.

Veloclity Potentlal

It is necessary for the .subsequent analysis to know the veloclty
potential For the unsteady two—dimensional transverse flow fileld
around an Infinite cylinder, the cross section of which is varying
with time In such a manner that it always remains similar to the
wing-body section in the = = x5 plane. Due to the iInfinits rate of
pressure propagation 1n an Incompressible fluld, the study of the
uneteady flow of an Incompresslible fluld 1s greatly simplifled since
the flow field at any Instant is ldentical to that of the corresponding
steady—state flow. The first step in the solution of the present
problem, therefore, 1s to determine the velocity potential for the
gteady—state flow around ean Infinite cylinder having a croses gection
gimilar to the wing-body section., In this analysls, only wlng-body
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configurations having circular fuselage sections and flat-plate
wings extending along the extension of a dlamster will be treated.
The flow around such a sectlion may be obtained from the transverse
flow around an Infinitely long flat plate by application of the
princlples of conformal mapping using the Joukowskl transformation.
Thua we conslder the mepping shown in figure 1 in which the ¢
Plane will be mapped onto the X plane by the relation

£ =X+ (1
where

£ = n+il
and

X = y+iz

The complex potentlal function for the flow 1n the ¢ plane is
(see, for instence, reference 10)

W' = @ + 1y = —iUa + £2-d2 (2)

where the primed symbols indicate values in the ¢ plane as opposed

to the X plane. It is also shown in reference 10 that, I1f d4=2a, +the
flow around a flat plate expressed by equation (2) transforms by
equation (1) into the vertical flow around a circle of radius a having
1ts center at the origin. If d 1s taken larger than 2a, the flat— -
plate flow transforms intc the deslred vertical flow around a cylinder
consisting of a clroular oylinder of radius a with thin fiat plates
extending outward along the extension of the horizontal dilameter to a
distance s from the origin. When the ¢ plane is transformed into
the X plene in this mammer, the complex potential for the flow in

the X plane 1s found to be

W=V = —an./ Gn-a;-f—da - -an./ (xﬁé)a— <s+a?2>2 (3)

gince the point d In the ¢ plane corresponds to the point s in the
X plane. The velocity potential ¢ for the flow in the X plane may
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‘P=iJ§

then be foumd by squering equation (3), substituting X = r {cos 6 + 1 8in 8), and solving,
Thug is cbtained

S99T °ON NI VOVN

[— (1+§i‘)r%oa 26+a® (u:—f) ]+ / r‘( 1+?-:) +2a%o0s ho4st (1#:; ):a’- <1+§-}'> (1+?;) rZc0a 26

(4

where the sign is positive in the upper half plane (0<8<x) and negative in the lower half
plane (x <8< 2x).

Load Distribution

Once the veloclty potential of a flow field ia known, the methods of classloal hydro—
dynamice may be applisd to determine the pressure at any polnt In the fleld. Comsider agalm,
the case shown in figure 1 where the wingbody combination 1a plercing the x=x, plane. As
previcusly noted, the flow in the x=x; plsne ls consgidered to be similar to the two—
dimenaional flow surrcunding an infinitely long cylinder having the shape of the wing-dody
cross soction intersected by the x=x, plame. If the radius of the body a -end the semispan
of the wing 8 saro considered o be functions of time, equation (4) may be thought of as
reprosenting the veloclty potentiel of the unsteady flow In the x=x, plane, In the case
of unsteady two—dimensicnal potentlal flow of an Incompressible fluld, the pressure at sny
point fixed in the coordinate system is glven by (see, for instance, reference 11, p. 19)

’

- % = g%’ + % (v2ew2) + P(t) (5)

It may be seen that this expression reduces to the well—known Bermouli's equation for the
pressure in a steady flow field when the velocity potential is invariant with time % =0
and the erbitrary function of time F(t) 1s a constant. =
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For any two corresponding points P; and Pz (fig. 1(b)), so
selected that y1 = y2 and 2z; = —z5, the differential pressure at
any instent is given by

Ap  p=py 992  dpy 1 1
—_—m e o e e o 2 - 2
P 3 St T3 3 (v2R®) + g (nBnl)
=+228 L (v 202 o L (23 (6)
ot 2 2
since -— g%?- = g% by reason of symmetry of the flow field. Now if

the polints are brought to the wing—body surface

Vo2itwa2 = v124w, 2

the dlfferential pressure between any two corresponding points (or the
loading) is given by

Ap o _
—P-=+2§t— (D

Utilizing the relstionship

w2 ex
3% 3¢ a5 ox U (&)

1
and dividing equation (7) by 5 U2, the loading coefficlent is found
to be

y 2
by _pime 3% k3%, dnda (9)
a4 g U U\ 9 dx da d4x

The load distributlon may now be obtained by substituting the
expression for the velocity potentlial given in equation (4) into
equation (9) and letting 6=0 or 6=r for the wing loading and
r=a for the fuselage loading. The loading over the wing 1s then
found to be given by
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— (10,

da [ a/a® a
(Ap) ( +a§[25 = FF ]

and that over the fuselage 1s given by

ds at da a /a®
-— {1 ~ + =2 = — cos 26
Ap. ax ( F) dxl: 8 (eﬁ ) J
.(q‘) = ko = | (1)
F a.2
/(l + —— - EE cos 20

In Cartesian coordinates,the loading over the fuselage is

-
ds a4t a da a2 v2 ]
&E\'"5) tfsm\lteEfaz

OFE

(12)

TPotal Lift and Moment

The total 1ift end pitching moment of a complete wing-body
combination may be determined by integrating the loading over the
entire plan—form area. It is convenient to carry out the Integra—
tion by first evaluating the 1ift on one spanwise strip and then
Integrating these elemsntal 1ift forces over the length of the wing—
body combination. The 1ift on a spanwlise strip of width dx is

glven by
= 2q dx[ﬁ(%g)FasinedB+\[s <e§->" d:r‘] (13)

or, In Cartesian coordinates

s [ o [(Bhe] o
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When the indicated operations are performed, the following expressions
for the elemental 1ift—on._the wing eand body are obtained.

d L ds et aa 2\
2 (= = has as -2 ca -2
ax <Q>F l:{ dx (l S4> * dx 1 g2 _

+g'£ {:22’-(14.&2_)'__5_(14_9'_2_)2 -—12%
dx 5 82/  2a 52 i 1+§§ ]
(15a)
2
2(2), - el -2[36-)])
dx N g7y dx 8 dx 8 8
1 -8

4 - 2 -
+ has {E<1-9T>+9-‘1 L2i<l+-a-’->:|}sin—l_—-——.
dx ) dx L s g2 a2

1+ —

82
(150)
Noting that
a a2
2 —~ 1l -
Bin—l g + sin—]‘ 82 =X
1+ & 1+82 2
2 2
8 8 (16)

equations (15a) and (15b) may be combined and simplified to give the
following expression for the total 1ift on an elemental spenwise strip.
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OREHICGDRIGON

+2a.s-g—;'{:<l———>——<l+— sin_l-i—i—g] (17)

g2

The 1lift, pltching moment, and center of pressure of the complete
wing-body combination may now be determined by integration of the
1ift of a1l the elementel strips

e [2 O
M=—qfx?‘a<%>dx (19)
.D. =-% (20)

where the Integration interval exitends from the most forward point
to the most rearwaerd polnt of the wing-body configuration., The 1lift
coefficlent, moment coefficlent, and center of pressure may be
dstermined from equations (18), (19), and (20) by division by

appropriste constants
14 L)
-— _—f = )dx 21
Sf dx <q (21)

(22)

Cy,

EO

]
I .
2=
o
gle
N
N/

--2 (23)

where S 1s the reference area and ¢ +the reference chord or

length.
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Effect of Compressibillity

In contrast to the well-known Infinite-aspect-ratioc case where
the pressures on the surface of a wing are influenced by compressi-
billity in a memmer described by the Pranditl-Glauert relation, it has
been shown by seversl Investigators that the pressures on very low—
aspect~ratio wings and very slender bodies of revolution are
unaffected by compressiblility. This result has been found by Jones
(reference 6) for low-aspect—ratio pointed wings at both subsonic
and supersonic speeds. B. Gdthert (reference 12) extended the low—
aspect—ratio rectengular wing theory of Bollay (references 13 and 1k4)
o include the influence of compresslbility and found no effect in
the subsonlc range. For a very slender inclined body of revolution
at subsonic and supersonic speeds, Laltone and Tsien (references 9
and 8) have found that the loading was unaffected by compressibility.
That such 1s slso the case Pfor slendsr Inclined, pointed wing-body
combinatlons follows from consideration of the basic differentlal
equatlion of llnearlzed compressible flow. In additiom, 1t will be
shown that the aspect-ratlio rangs to which the theory is applicable
becames larger eg the Mach number approaches cne.

Prandtl (reference 15) has found the linearized differential
equation for the velocity potential of campressible flow to be

3% , 3% . 3%

1-My2 + + =0 (2k)

(1-46%) dx2 Jy2 dz2

In the development of the expressions for the forces on long slender

wing-body combinations, it has been assumed that -g—i—:i 1s so much
29 %9 N

smaller than Sos end S thet the first term of equation (24)
y2 z '

320
may be neglected. Therefore, so long as the term (1M,2) S
in the differential equation remsins small, Mach number will have
1ittle influence on the distribution of the veloclty potential.
Consequently, Mach number has little effect on the aerodynamic
characteristice of a long slender wing-body combinetion at either
subaonic or supersonic speeds. It 1s immedlately apparent that the
Mach number cannot be increased indefinitely, for then the coeffl—

_ 2
clent of g——;—e becames so large that the first term will no longer
bd .
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be negllgible. The requlred conditlon will be satisfied, however,

if the body has a pointed nose, the wing & polnted plan form, and

the entire wing-body combination lles nesar.the center of the Mach
cone. All these conditlions, however, correspond to those origlnally
assumed In ‘the derilvation of the expression for the velocity potential
(equation (4)). Therefore, the present theory is applicable at
supersonic speeds, as well as subsonic speeds, provided the entire
wing-body combination lles near the center of the Mach come.

It has been shown by Robinson and Young (reference 16) that,
for finite aspect ratlo, the linearized theory of compressible flow
(equation (24)) remains theoretically comsistent and yields finite
and continuous lift—curve slopes 1n the transonic range. Recent
experiments on triangular wings at transonic speeds support this
contention by indicating agreement between measured. and computed
lift—curve slopes. Therefore, to predict the flow around a body
traveling at or very near sonlc velocity, it 1s correct, unless the

2
torm B_ép becomes extremely large, to let My=1 and solye the

X
remeining equatlon for the potential distribution. The remaining
equation 1s the two—~dimensional Laplace's equation In the transverse
plane. This means that, although the veloclty potential may vary
in the longitudinal direction, its value at. each point may be
destermined solely by studylng the flow in the transverse plane
containing the point in question. Therefore, since this is preclsely
the manner in which the potential distribution was obtained, the
results of the present analysls are applicaeble at transonlic speeds.
In fact, the present theory is most applicable to wing-body
combinations of moderate aspect ratio if the Mach number 1s one, since

329

it is then no longer necessary to assume that —— 1s very much
320 329 ox=2

gmaller than —— and — .
dy2 dz2

In retrospect, the assumptions related to the study of low-aspect—
ratio pointed bodies and the study of modsrate-aspect—ratio pointed
bodies traveling at sonic speed both lead from the Prandtl equa—
tion (equation (24)) to the two—dimemsional Laplace's equation in
the transverse plane although by dlfferent means. The low-aspect—

2 29
ratlio theory neglects the term (l—-Moa) -g—xg in comparison wlth g;;
d%9 %9 , | '
and 3—2 because —a—E is very esmall; while the modsrate-aspect—
z x

ratio sonic theory neglects the same term because (1—1402) is zero.
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Thus the determinatlion of the potential distribution for an inclined
moderate-aspect—ratio wing at the speed of soumd is mathematically
equlivalent to the determimstlion of the potential distribution of en
inclined low-espect~ratio wing In an Incompressible fluid.

EXAMPLES

For a glven wing-body configuration complying with the general
requirements of the present theory, the load distributlor mey be
determined directly by substituting the proper values for the body
radius and wing semispan and thelr rate of change with x into
equations (10) and (11). In addition, closed expressions for the
1lift, pltching moment, and center—of-pressure position of several
elemsntary configurations may readily be found by simple Integration
of the integrals indicated by equations (21), (22), and (23).
Several such exemples will be presented In detall in thls sectlon,
and. the results will be compared in the following section with those
obtalned from linear theory and from experiment.

Polnted Low-Aspect-Ratlio Wing

Although the agsumptions of-this note have been used previously
by R. T. Jones in reference 6 to determine the asrodynamic properties
of low-agpect~ratio wings, the losd distribution, 1ift, and
pltching moment willl be rederived for completeness of presentatlon
and to show a simple application of the precedlng expresslons, The
aerodynanic properties of a low—agpect—ratlo wing without fuselage
may be dstermined by letting

a
§=0 &H-=o0

By substitution of these values into equation (10), 1t follows that
the load distribution along any elemental spanwilse strip 1s

ds
he &
G-a= Fe (25)
1- L
s2 .

The loading (fig. 2(a)) thus shows an infinite peak along the
leading edge of the wing. The total load on an elemental spanwise
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strip is found fram equation (17) to be

%G) g = hxaqg g;— (26)

Equations (25) and (26) show that the development of 1ift by the
long slender wing depends on an expansion of the sections in a
downstream direction. Accordingly, a part of the wing having
parallel sides would develop mo 1lift, while a part having contract—
ing width would have negative 1lift with infinite negative loads
along the edges. In the actual flow, however, as R. T. Jones points
out (reference 6), the portion of the wing behind the. maximum oross
gectlon will 1lie in the viscous or turbulent wake formed over the
surface shead. Consequently, the Infinite negative loads will not
be developed on these edges. With the aild of the Kutta condition,
Jones then concludes thet no 1ift 1s developed on sectlions aft of
the maximum cross section. This 1g known to be an oversimplifica-—
tion of the truth and conslderable caution should be exerclsed 1n
applying the present results iIn the case of constant or gradually
contracting width. )

The 1ift coefficlent for this wing ls found by integration of
the load on the elemental strips between the leading edge and the
widest sectlion as indicated by substituting equation (26) into
equation (21)

cf Smax
1 ds bna, _n hepae® x
CL=§‘/°‘ h:tcr,s-éidx= 3 sds—am S —2Aa, (27)
J"'smm:z
where c¢' 1s the effeotlve wing chord and S = A, the aspect

ratio., It is seen that the lift—curve slope %z——l'- depends only

on the aspect ratio. It should be noted, however, that the actual
1ift force depends only on the span and angle of attack and not on
the aspect ratlo or the area.

By similar substitutlion and integration by parts of egquation
(22), the pltching moment about the leading edge is

ct .
1 ds x gt hsmax® 1l-(sa)m:l % c!t [
cm=_s._c“[ hﬂas—xdx:—EE__q,[ ——— ] e —— Ay .._.
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1 ot
where (52)m = = f s%dx and where moments tending %o produce
o

a nosing-up rotetlon are considered positive, The center—of—
pressure locatlon is then found by dividing the moment coefficilent
by the 1ift cocefficient as indicated in equation (23).

Xc.p. Cm of [l_h-(;Z)m:l=9_'_ [l_::ixg]

(29)

o]

For a more speciflo example, conelder a triangular wing moving

point foremost. Then mince (s2), = % Smaxz and c'=c, +the pitching-
moament coefficient and center—of-pressure posltion are glven,

Xc.p. 2

regpectively, by Cp = —;—‘- Ao and = 3. The center of pressure

is seen to be st the two—thirds chord point or the center of area.

Pointed Slender Body of Revolution

The present method for treating the flow around long slshder
bodies was Introduced by Munk in reference 5 for the determination
of the distribution of forces slong the longltudinal axis of a body
of revolution (airship hull). In the present section, these results
will be redsrived. In addition, expressions for the total 1lif%,
pltching moment, and load distribution will alsc be presented.

For the slender polnted body of revolution, the following rela-
tions exist:

l
i3
gl&

where % is not necessarily constant, If these values are

substituted into equations (11) and (12), the loading distribution
along any elemental strip is

(%’L)Bl=sa§sma=§a§ [i-Z (30)
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The load distribution (fig. 2(b)) is thus seen to be elliptical,
being zero at the extremities of a horizontal diameter and a maximum
at the midpoint. The total load on an elemental spanwise strip 1s
found from equation (17) to be

dx dx

d /L da dB
= <q> q = kraga 2aq (31)
where B 1s the local cross—sectlon area. It 1s seen that equation
(31) 1s identical to equation (26) for the integrated load on an
elemental spanwlse strlp of a triangular wing, even though the
distribution of load In the .two cases 1s widely different. In
contrast, however, to equation (26), which is to be applied only to
wings of increasing span, equation (31) may be applied to bodies of
revolution in regions of either increasing or decreasing radlus,
since the Kutta condition does not apply to bodies of rsvolution.
Thus, in general, the lift and pitching moment of a body of revolu—
tion are different from those of a wing of identical plan form;
however, 1if the maximum diameter of the body of revolution is at

the base station, its 1lift and pltching moment are.equal to those

of a wing of identical plan form at the same angle of attack.

As before, the 1lift coefficlent will be determined by subatituling
equation (31) into equation (21). Taking the area of the base cross
section By as the reference area and Iintegrating over the length
of the body 1 +the 1lift coefficilent is found to be

1
1 dB
= —— o — dx = 2a 2
‘L Bbu41 2 dx 2 . (32)

since the cross—section area B 18 By at x=1 and zero at x=0.
Tt is thus seen that the 1ift of a slendsr body of revolution depends
only on the cross—ssection area of the base, and is independent of

the general shape of the body. A possible effect of viscosity 1s
indicated by such a relationship since the effective base area of

the body will be larger than the true base area by an amount
dependent on the boundary—layer thickness. Therefore equation (32)
will probably temd to underestimate the true lift—curve slope,
particularly at lower Reynolds numbers where the boundary—layer
thickness 1ls greatest.

By similar substitution and Integration by parts, the moment
coefficient about the leading edge is :



18 ' NACA TN No. 1662

Cp = = fam—xdx —ea(l——\ (33)
B-bl Jo dx By/

where By is the mean cross—section area .(i.e., the volume of the
body divided by the length). The center—of-pressure locatlon is
then found through use of equation (23) to be

Top. B _, n D

For a more specific example, conslder a cone moving point foremost.-
The base cross—sectlon ares is

By = 782
The mean crogse—gection ares is

1 .2
= — N8
Bm 3
The center of-pressure 1is thus seen to be at the two-thirds point as

would be anticipated- by the conicael nature of -the load distribution
for this case.

Triangular Wing With Conlcal Body

The first example of a wing-body combilnatlion to be comsidered
is that of a conlcal bodg mounted on a triangulsr wing so that thelr
vertices coinclde, The goeometry of such a configuration requires
that

a _ da/dx Cx
8 ds/dx
da da
where both iz and = are conatants, If these values are

substituted into equations (10) and (11) as described in the two
preceding examples, the load dlstribution along any elemental strip
on the wing is given by

1okt —oxt 22
(@l _-_1;{,;%_% I= for a<y<s

2
4 J 4 B4
1+k™ ~ —= ( 1+k -z
f 8 v

(352)
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and on the body by

A ds
<TPF =.uaaﬂ1+k2)2-4§ for o<y <a (350)

Figure 2(c) shows the. load distribution on a typlcal wing-body
comblnation of this type together with the load distribution on the
same wing wilthout body.

The integrated load on an elemental strip is

= ( > g = Yrags % {1+k + 21 {Qk(l—kz)—(lﬂ:z)a ITI-T:'Z:I} 1htcnqu(l+R)
(36)

where

= k% + i- [21c(l—k2)—(l+k2) ™ 1?1;2 ]

The 1lift coefficlent for the entlre conical wing-body eocmbination is
then

Cr, = 32‘-Am (14R) = ch(l+R) , (37)

where CLW is the 1ift coefficient of the basic triangular wing.

The area and aspect ratio of the wing-body comfiguration are
consldered to be equal to those of the basic wing. Due to the
radial nature of the lines of constant pressure, the center of
pressure lies at the two—thirds chord point

c 3
The moment coefficilent 1s then obviously

X 2
P (38)*

O = — § Ax(1+R) = Cp (14R) (39)

where, similsr to before, me represents the pltching moment of
the basic wing. Figure 3 shows the variation of Cr,/Cr with

ratio of body dlameter to wing span for this type of wing-body
combination., While the wing alone and body alone have ldentical
1lift—curve slopes gince the wldsest section 1s at the tralling-edge,
the lift—curve slops of the wing-body comblnatlion is always less
than that of elther & wing or body alone. The maximum loss of
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lift—curve slope (about 8 percent) occurs when the body—radlus
wing-semlspan ratio 1s approximately 0.7.

Triangular Wing on a Semi-Tnfinite Cylindrical Body

The next example to be considered is that of a triangular wing
mounted om a semi—infinite cylindrical body. The essential relation—
ships to be used are that

da

— =0
dx

and that ds/dx is constant. By using these relationships as in the
previous examples, it is found that no 1ift is carried on the body
ahead of the leading edge of the root chord. Behind this point,
however, 1ift is carried on both the wing and body and is distributed
on any elemental strip of the wing in & menner described by

4
(AP)" for a<y<s (40a)
2 A
f< EGH
and on the body by
) <é§ for o<y<a (L4op)

The load distributlion at one longitudinal statlion of a typical wing—
body configuration of the type considered In this example is shown
in figure 2(d). For purposes of comperison, the load distribution
over the same wing without the body is also indicated in figure 2(4).

The integrated load on an elesmental strip is given by

éa . ds a4

By integration along the length of-the body, the 1ift-coefflcient for
the complete wing-body combination, based on the area of the basic
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triangular wing without fuselage 1is found to be

SENAES R QD

It may be seen from equation (42) and figure 3 that the additlon of

a semi—infinite cylindrical body to & itriangular wing produces a

loss 1n lift—curve slope Just as In the preceding examples with the
conical body. With the cylindrical body, however, the lift-—curve
8lope has no minimum value, but continues to decrease as the radius—
semispan ratio Increases until finally, when the latter ratlo is one
(corresponding to a body without wings), the lift—curve slope is zero.
This is as 1t should be, since & semi—infinite cylindrical body has
zero lift—curve slope. The moment coefficient about the vertex of the
baglec triangular-wing is

Tl a8

Cp 1-4 at ) (1 y 2% ,5_2% )
= - — —_ + = - +
m 3 Smax® 3 Smax * Comyy Bmax > Smax

(43)

The center—of—pressure position of the complete wing-body cqmbination
is glven by

a 2
o5 L / Bmax '
e — (44)
3 3 1+ 2
Smax
Since the center of pressure of the wing alome is at the two—thirds
chord point, it may reedily be seen the second term of equation (4k4)
represents the change due to the addition of the body. Figure L
ghows the varilation of the center—of—pressure position with the ratio
of body radius to wing semispan. In contrast to the constant center—
of-pressure position of the previous exsmple for the triangular-wing,
conical-body combination, the center of pressure of the triangular
wing, semi—infinite cylindrical body combination moves rearward as
the body radius becomes larger with respect to the wing semlspan.

Triangular Wing on a Pointed Body

The case of a triangular wing mounted on a pointed body, closed
in an arbitrary manner at the nose but cylindrical along the wing
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root chord, may be studled by combining the results of two previous
examples. The portion of the wing-body combination ahead of the
leading edge of the wing root may be consldered to be equivalent to
the arblitrary body of revolution treated In the second example. The
portion: of - the wing—body combination aft of the leading edge of the
wing root 1s equivalent to a trilangular wing moumted on a semi-—
Infinite cylinder as discussed in the precsding example. The load
distributlion and the Integrated load on any elemsntel spanwise strip
are then the same as those glven In the corresponding examplse.

The 1lift coefficlent-is found by adding the lift~forces of the

component partes of the wing—bhody combinstlon and dividings by the
AN WAL AL T ML N (SIS ey I".I-I..Lb UVU\, WAL LAIGA WL WLL WAL WL Y &ul‘b UJ ULl

dynamic pressure ¢ and the characterlstic area, again taken to be .
the area of the basic triangular wing. The 1ift coefficient is then
found to be :

=X - a® a2 = - a2 at
Cp =g ha(l max® Smch“) Cry Smax® Smax"') (45)

Flgure 3 shows the varlation of the llft-curve slope wlth body—radilus
wing—seemispan ratio. A comparison of the lift-curve slopes shows
that-the loss in the 1ift of a tria.ngula.r wing resulting from the
addition of a body having a polnted nose is much less than that
resulting from the addition of a semi—infinite body.

The moment coefficient for this wing-body combination may be
found in a mammer similar to that used 1n finding the 1lift coeffi-
cient, taking care to transfer the moments of both component parts
to the same axls. The moment coefficlent ebout the vertex of the
basic triangular wing ls

oA a8 a4=> 2o \:as By /1 & ) :|
Op = — —— (1 — 1L + 3 - e 3 (A [
3 Smax® Smax*/ 5 lepmax T \C Smax.

. at” Ena.[as By /1 1 a)]
me<_ |am,a.xée-l-_}'ama. 5 |Bmax T N\° +Bma.x
(46)

where &a represents the radius of the cylindrical portion of the
fuselage, 1 the over-all length of the wing—body combination, and
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B, ‘the mean cross—sectional area (i.e., volume divided by length)
of the portion of the body ahead of the leading edge of the wing
root. ) ’ '

COMPARTSON WITH OTHER RESULTS

As shown In the preceding sections, 1t is a comparatively simple
matter to calculate the load distribution, 1lift, and center of
pressure of complete wing-body configurations by means of the present
theory. It has been shown that the theory 1s most applicable at Mach
numbers near one or for conflguratlons having very low-aspect-~ratio
wings. Its accuracy at other Mach numbers or at larger aspect ratios
can best be assessed by comparison with experiment or more nearly
exact theory, where avallable.

Comparisons with available theoreticael and experimental 1lift—
curve slopes of triangular wings of varying aspect ratioc at super—
sonic and subsonic speeds are shown in figures 5(a) and 5(b),
respectively, In the supersonic range (fig. 5(a)), the linear theory
golution of Stewart, Brown, and others (references 17 and 18) for
the varlation of lift~curve slope wlth aspect ratio is shown for
Mach numbers of 1.0, 1.2, and 1.%. At a Mach number of 1.0, it is
seen that the present theory exactly predicts the linear theory
value of the lift-curve slopes of triangular wings of any aspect
ratio. Increasing the Mach number decreases the degree of correla—
tion at the larger agpect retios. In summary, thils figure Indicates
that the present theory ls very accurate for slender wings at low
supersonic gspeeds where the wing 1s near the center of the Mach
cons, and decreases ln accuracy as the wing becomes larger with
respect to the Mach comne.

In the subsonic case (fig. 5(b)), no liftingeurface theory
for the triangular wing comparable to the supersonic triangular—
wing theory exists, and all comparisons will be made directly with
experiment, Three test polnts from reference 19 are shown for
wings of aspect ratlo 0.5, 1.0, and 2.0 tested at very low Mach and
Reynolds numbers in the Langley free—flight tunnel. As 1n the
supersonic case, the accuracy ie best at very low aspect ratlios
and decreases as the aspect ratlo lncreases.

A comparison between lift—curve slopes for a complete wing—
body combination consisting of a conical body and a triangular
wing calculated by the present theory and by supersonic conical-
flow theory is shown In figure 3. A curve presented by Browne,
Friedman, and Hodes (reference 20) for the lift—curve slope of a
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wing-body configuration conslsting of a conical body having a fixed
raedius of 0,1322 the Mach cone radius and a triasngular wing of
varylng spen 1s shown by the dotted line in flgure 3 together with
the corresponding curve obtained by the present theory, These two
curves never differ by as much as 1 percent, indicating that the
bresent theory and the conical—flow theory are in close agreement
in predicting the lift-curve slope at supersonic speeds of a wing-—
body combination consisting of a slender conical body and a low—
agpect—ratio triangular wing.

Ames Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,
Moffett Fleld, Calif+—

APPENDIX
Correction tu Loading on Portion of Fuselage
Aft of Wing Trailing Edge

A mothod for the calculation of the aerodynamic loading on the
entire surface of a slender polnted wing-body combination has been
presented based on the assumption that the flow In each transverse
Plane 1s independent of that in the adjacent planes. It was noted -
that the results so obtalned were not applicable to the portion of
a wing sltuated behind the wildest section because the flow in this
region wag influenced to a prohibitive degree by the downwash fileld
of the sections further forward. For the same reason, the results
are also Inapplicable to the portion of the fuselage aft of the
wing tralling edge, particularly when the fuselage dlameter is
small in comparison with the wing span. Since the fuselage 1g
usually extended behind the tralling edge of the wing, 1t is desir-
able to determine a corrsciion to apply to the loading expressions.

With assumptlions more restrictive than those of the malin body
of this note, it-is possible to obtain an estimate of the corrected
loading on the fuselage afterbody. The necessary assumptions are
that-the downwash veloclty in the vicinity of the fuselage with
fuselage removed is known, and that the downwash veloclty remains .
congtant throughout-the entlre transverse plane at each longltudinal
station. It is immediately apperent—that the latter assumption is
not entirely correct, but it is true that the downwash velocity is
approximately constant over a reglon of limited latersl extent-at
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each longitudinal station. Since the forces on a body are produced
predominately by the flow field near the body, thls asswmption
should be a valld one as long as the fuselage sections remain in
reglons of relatively constant downwash veloclty 1n each transversse
plane, Thisg means that the fuselage diameter must be small in
comparison with the wing span.

With the foregoing assumptions, the loading on the fuselage
afterbody may be determined by an extension of the present method.
Consider, as in figure 1(a), the flow in the transverse plane as
the fuselage afterbody is pilercing the x=xpo plane. The flow field
corresponding to that of figure 1(b) would then be that of the
vertical flow around a circular cylindsr. As in the previous
analysis, the fuselage radius would, 1n general, appear to be
varying with time. In addition, slnce the downwash veloclty varies
with dlstance behind the wing, the veloclity of the vertlical flow
would also appsar to be varyling with time. The correct expression
for the 1ift on each strip across the fuselage may then be obtained
by substituting the local angle of attack «—€ for the airplane
angle of attack a in equation (31) and adding a corrsction term
for the effect of the longitudinal gradient of the downwash velocity.
The latter correctlon term may be determined very simply using the
additional apparent mass concept. The correction to the 1lift force
on an elemental strip of unit width across the fuselage afterbody
is then given by

a /L dw de
AS(E)g =m & - opg &= Al
i(c)q r a3 (A1)

In this equation, the addltional apparent mass of a unit length of
a clrcular cylinder of cross-sectlon area B 1is (see, for instance
reference 11, p. T7T)

m = pB - (a2)

end the vertical velocity in any transverse plane 1is
v = U(a—e) (43)

where e 1s the downwash angle. The total 1ift on each elemental
strip of unit width of the fuselage afterbody 1s then

%G)q;eq [(m>§—s‘§] (ak)
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Since the downwash angle numerically equals the angle of attack on
the wing surface Immedlstely ahead of the wing trailing edge and
decreases In value as the distance from the trailing edge Increasges,
it 1s apparent that € has a positive value and that —gﬁ- has a
negative value, Thus, effects of downwash angle in equation (&l)
tend to cancel each other. Another l1tem which should be mentioned
1s that the downwash behInd wings varies considerably with Mach
number., Consequently, compressibllity will affect the 1Lift on
fuselage afterbodles.

At subsonlc speeds, an upwash exlsts over the portlion of the
body extending ahead of the wing, although this upwash is of
considerably smaller magnitude than the downwash behind the wing
for the slender pointed winge consldered here. ZEguation (AL) may
be applled to dstermine the magnitude of the corrected loading
taking Into accoumt the upwash.

By using methods similer to those developel in the main body
of this note rather than the shorter additlional apparent mass
methods, i1t can be shown that the load dlstribution across esch
gtrlp of the fuselage afterbody is elliptic.
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